STARSHELL
Technology Profile - Aug 2022

Created by Blake Regalia



Platform/Vendor Compatibility .
e iOS, iPadOS, macOs J @

o Safari app extension via App Store

e Android

o Firefox for Android & Kiwi Browser

e Desktop

o Chrome, Firefox, Edge, Opera & all Chromium+ via Chrome Web Store

B Beta has been tested and is working in all the above environments



Notable Engineering Accomplishments in Q3

Password-based, FIDO2 Security

. Tokens, and Biometric Authentication
dApp API Security Layer

Encrypted persistence and exporting
of all wallet (user) data

All secp256k1 operations for soft wallets (novel WASM module)

Authoritative HQ policy enforcement (e.g. zero-day response)

System notifications & inline notifications
Build & deployment pipeline to all target platforms

Activity log and incident inspection (incl. raw tx JSON)

Data stores schemas and management QR Code Generator, Scanner and Universal Deep Linking

Networking

Bank::Send + Private Memos
gRPC-web abstraction & network layer

RPC Websockets (event subscriptions)




Tasks Remaining to Reach Production

Authentication, Mnemonics, Recovery Contacts & Accounts

Search Staking

Keplr API Polyfill
Design Fidelity Review

Finalize iOS integration

Code Review, Cleanup and Refactoring Hardware Wallets

Networking

Smart Contracts




Part 1. Leveraging State of the Art
Reliability and Redundancy



Mnemonic Backup Redundancy

. SLIP-0039 Configuration Example A1. Sister
StarShell implements : S
- A2. Brother
SLIP-0039, allowing users to :
A. Family
divide their seed phrase Ay A3 Mother
mnemonic into a two-level , el
B. Safety Deposit Box
threshold scheme consisting of
“ ” “ ” Master Secret
groups” and “shares”. Any 2 o House Safe D1. Alice
D2. Bob
D. Friends Ay 3 D3. Carol
D4. Dave
D5. Erin

https://github.com/satoshilabs/slips/blob/master/slip-0039.md



https://github.com/satoshilabs/slips/blob/master/slip-0039.md

Leveraging native cryptography APls
Cosmos has recently added support for signing and verifying transactions

(ECDSA) over the secp256r1 curve.

This allows new soft wallet accounts to take advantage of hardware-level ECDSA
native to their device, for example on their laptop or mobile phone.

This provides even better security for soft wallets, but some users may prefer to
stick with secp256r1 out of concern for NSA backdoors in NIST P-256.



Node Service Infrastructure and Validator Redundancy

StarShell is building a high-availability
node service infrastructure (lac) in
Azure.

In addition to managed service provided
features like DDoS mitigation, our infra
also performs load-balancing,
self-healing and auto-scaling with
intelligent backup/restore and key
management, spanning multiple
regions.

Zone 1a Zone 1b Zone 2a Zone 2b



WebAuthn and gRPC-Web

StarShell will implement and expose a WebAuthn Authenticator interface to dApps
so that users can register new accounts that are ultimately derived from their
seed key, effectively turning their soft/hardware wallet into a web authenticator.

gRPC-Web ensures that calls to the nodes are accurately generated directly from
the protobuf definitions defined in Cosmos-SDK or in a chain’s extensions.



Deep Conditional Typing

StarShell’'s approach to implementing the
client software starts with R
metaprogramming conditional type G e Contig).

> = Compute<{

d efi n iti O n S i n Typescri pt th at g e n e rate [si_key 1n k‘eyof‘v ﬁ_sou;'ce] : Jh‘_sou‘r‘ce[si_kvey‘/] éx£e;\ds infer‘ g‘_so‘u‘rc; :

? g_source extends h_sourcelsi_key]
? Merge<

deeply typed inferences used for { "

" A message: MergeAll<{
comprehensive type-checking at e
compile-time. SRR

: {3

This practice streamlines development and se e ese) extens bt

? gc_vocab['each']
b

testing for existing and new contributors e
alike. It also provides rich and reusable i

S

type definitions for downstream apps.

: {3



Part 2. Innovations
Privacy, Security, and IBC



Privacy while Browsing the Web

StarShell has created the Covert Discovery model to help protect user privacy.

With StarShell, Web dApps must first request to see the wallet, rather than
automatically having access to pre-injected globals such as window.keplr

The problem with pre-injected globals is that they are present on every page,
(not just dApps!) exposing users to being profiled and enhancing fingerprinting.

https://medium.com/@starshellwallet/web3-wallets-have-serious-privacy-and-security-flaws-5023f8f872b1



https://medium.com/@starshellwallet/web3-wallets-have-serious-privacy-and-security-flaws-5023f8f872b1

Privacy from Snooping

StarShell allows users to protect their on-chain address from prying websites by
using derived “shadow accounts” when interacting with dApps.

When enabled, web apps see a false public key while StarShell automatically
transforms the outgoing and incoming messages to the correct public key.

Shadow accounts are recoverable, ensuring that should a user later discover
the website recorded public keys for airdrop rewards, bridge transfer, or some
other external action, user can still access those funds.



Privacy in Micropayments

Using existing standards and technologies within Cosmos-SDK, StarShell enables
end-to-end encrypted memos, allowing everyday users to add context to their
micropayments when sending to peers.

With our implementation, this feature is compatible with all Cosmos chains.

Laszlo Writes Block Explorer Memo deremyesees

Thanks for the 2 pizzas dgQ460Q0aUTzDdcz17xtLtBYFySqcCt5cIIXKBK2Mg Thanks for the 2 pizzas

*example truncated for brevity; actual memos padded to constant length



Privacy and Security on Mobile

We drafted the StarShell Link Protocol
(S2LP), which is designed to reduce data
leakage for inter-app communication on
mobile devices, and allows for the same
multi-chain, multi-account connection
features offered thru the browser extension
APls.

https://qithub.com/SolarRepublic/prerelease-docs/blob/main/StarShell

-Wallet-API-Primer.md#starshell-link-protocol-s2Ip

Wallet Time

Authorization

Seeks user approval of requested connection(s) with
associated permissions.

Denied Approved
Optionally opens error Opens success
callback URL callback URL
Confirmation

Checks request against permissions of the already
established connection, then seeks user approval of the
requested action(s), then executes and returns result(s).

Your App

Connect to StarShell

9’ Prompt the user to connect

l

Fetch Private Key from Keychain items

Check the device's keychain items o see if your app has already
generated a private key for communication with StarShell.

|

Private Key Generation

Generate a new RSA-OAEP key pair to be used in the
upcoming key exchange with Starshell. Store the private
key in a secure place (e.g. your app's keychain item set).

) 1
/ Connection Request \

©Open a Universal Link to StarShell's connection request URL:
https://link.starshell.net/vl/connect?{queryArgs}.

‘The query arguments include what permissions are being
requested, the success and error callback URLS, and the
universally unique RSA public key s part of the key exchange
K used for subsequent encrypted requests and callbacks. /

/ Connection Response \

Appended to the query arguments of the callback URL
include Starshell's public key for encrypting all subsequent
requests such as message signing, contract execution, etc.

https://callback-domain/path?{queryArgs}

\\ &s2r-pubkey={. ..}&s2r-verify={...} /

l

/ API Request \

Every time your app needs to make an API call on an
existing connection, the data in the request and the
response must be encrypted.
https://Link.starshell.net/v1/api
?7s2r-pubkey={ . .. }#{encryptedData}

.
4 I

API Response

Response to invoking the requested actions.
nttps://cal lback-domain/path?{queryArgs)
#{encrypteddata}



https://github.com/SolarRepublic/prerelease-docs/blob/main/StarShell-Wallet-API-Primer.md#starshell-link-protocol-s2lp
https://github.com/SolarRepublic/prerelease-docs/blob/main/StarShell-Wallet-API-Primer.md#starshell-link-protocol-s2lp

Security from Malware and XSS

StarShell has engineered the
first page & extension
connection protocol
designed to resist MITM
attacks from cross-site
scripts, malicious
co-installed extensions and
system malware.

Are these types of attacks even realistic? YES

starShell Provider APl Communication and Security Model [v1]

Extension

Service

App Context

Page Window

chrome. runtime.

scripting. exel

sendMessage

uni-directional

bi-directional

definition——>
<€—invocation——>

1
1
1
1
1
1
1
1
- 1 |
1
1
1
1
1
1
1

Isolated World

Spotter
Listens for window
messages that
request wallet
advertisement

port. postMessag

Main World

App

Ratifier

Verifies the authenticity of window.starshell global

<div>

Injected into <head> to avoid layout

closed shadow DOM
Not accessible to parent

Verify

| e

Connection

A

port. postMessage

iframe

Private frame provides vanilla window w/ native built-ins
and access to parent frame via window.parent

Relay
Establishes global in parent
frame and creates
MessageChannel for use
between App and Host

defines|

window. starshell
alal

Main World (cont'd)

https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-chrome-could-allow-for-arbitrary-code-execution_2022-073



https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-chrome-could-allow-for-arbitrary-code-execution_2022-073

Security from Theft: Hardening Soft Wallet Security

All soft wallets that run in the browser perform elliptic cryptography in JavaScript.

Problems with doing secp256k1 in JavaScript:
e itis completely vulnerable to side-channel attacks during key generation, signing, etc.
e none of the current JS libraries zero-out sensitive data (infeasible w/ string and bigint)
e JS impls tend to be very opinionated, leading to possible divergent implementations
e the most popular and widely-used JS libraries are susceptible to supply-chain attacks w/

over hundreds of dependencies

StarShell is bringing the libsecp256k1 C library from bitcoin-core to WebAssembly:
e constant-time and constant-memory greatly reduces exposure to side-channel attacks
e all key material is immediately & synchronously zeroed out after use
e upstream is very reliable, highly optimized, and thoroughly audited



Security from Theft: Improving Key Management

StarShell has implemented a mechanism _

StarShell private key management
allowing it to leverage platform-specific key Key Generation / Key Wrapping for secp256K! in the browser Key Unwrapping
management from the browser (which in turn

. . randomBytes() baseKey; encryptedKey
uses system-available hardware security such .
0 . baseKey
as keychain enclaves) to encrypt and persist ¥ \ - :
await deriveBits("HKDF", baseKey, 32) await deriveBits("HKDF", baseKey, 32)

secp256k1 private keys.

™~ —
basekey baseKey
e i e — |
Keys are subsequently restored for use, using \derivecsis derivedbits,

. . . generatePrivateKey() xor(derivedBits, encryptedKey)
one-time pad, and only exist in memory for |
very short periods of time (on the order of privaee privaetes
ml||lseCOI’1dS) xor(derivedBits, privateKey) sign(privateKey, messageDigest)
This further protects key material from
zeroOut(privateKey) zeroQut(privateKey)

cold-boot and key-finding attacks on browser
RAM both while the data is at-rest and in-use.




Security from Theft: Even on Compromised Device

StarShell is currently researching a multi-party threshold ECDSA scheme that
would allow users to require signatures from multiple devices.

This system would provide a more secure alternative to people who do not have
access to hardware wallets by allowing them to effectively split their master key
between multiple devices, such as their laptop and their phone.

StarShell ECDSA Threshold Signature Example lllustration

Seed Phrase

: i 3 Message
? Sk Share #1 : v

Threshold ECDSA s e Thress?g:‘ciinI;CDSA A CCOUnt N
\ED‘evice #2 : (t=2, r=2) Signature of M
: Sk Share #2 :

Generation

Account #N Sk

(t=2, r=2)




Security from Spoofing and Proof of Authenticity

The wallet derives profile pictures from a deterministic, multi-party signature
between user’s account and StarShell’s web services, ensuring that no other
extensions, websites, etc., can spoof the wallet or trick users. Also provides
guarantee of sync-ness across devices and across account restores.

' ‘ \




Multi-Channel Networking

StarShell Wallet Connection Provider Architecture by Example

AI |OWS dAp pS to esta bl |S h StarShell Wallet Service your-app.domain.net

mUItiple, SimUItaneOus your-app.domain.net ‘ Tab #1: /swap

. i i secret-4 —
connections to different chain J_) | = i
networks, greatly improving secret-4 Provider | cosmos-4+ [

developer experience for writing ‘ Tab #2: /swap

IBC and cross-chain applications. - e
cosmos-4 Provider | swap application
cosmos-4 =
Also seamlessly handles cases |

where same application is ‘ Tab #3: /bridge
connecting from multiple tabs. 4\_) el —
ridge application
osmosis-1 S




Part 3. Vertical Integration
Validator, Node Services, and HW



StarShell Validator

We will run a Secret Network validator in a cosigning cluster configuration

High-availability thru (3, 5) threshold signature means 2 nodes can be offline
Improved opsec: no individual cosigner holds the master validator key
Cosigners divided among regions, colocated instances run different OS
Considering purchasing bare-metal machines with HSM for signing
https://github.com/strangelove-ventures/horcrux



https://github.com/strangelove-ventures/horcrux

Node Services

StarShell will support clients with its own infrastructure designed to be elastic.

Additionally, StarShell will pursue a B2B model by continuing cloud development
in order to provide fully managed node services for applications that want
dedicated resources for their apps, including private testnets.

This plan would be a phased approach, starting with hosted VPS resources and
working our way towards reducing costs by purchasing bare metal hardware to
install in leased rack space at colocations (data centers).



Wallet Features

Additional new provider API features:
e Encrypted key/value stores API (v1)
e Alert configuration management (v1)
e Query plugins (v2)

Complementary services:
e Beacon (v1)
e Ultility bots (v1.5)
o Graffiti (v2)





https://starshell.net/

